Consider two series \(\mathop \sum \limits_{n = 1}^\infty {a_n}\)

Consider two series \(\mathop \sum \limits_{n = 1}^\infty {a_n}\)
| Consider two series \(\mathop \sum \limits_{n = 1}^\infty {a_n}\) and \(\mathop \sum \limits_{n = 1}^\infty {b_n}\) where \({a_n} = \frac{1}{{n\sqrt n }}\) and \({b_n} = \frac{1}{{n!}}\), then

A. The series&nbsp;<span class="math-tex">\(\mathop \sum \limits_{n = 1}^\infty {a_n}\)</span>&nbsp;is convergent and&nbsp;<span class="math-tex">\(\mathop \sum \limits_{n = 1}^\infty {b_n}\)</span>&nbsp;is divergent.

B. The series&nbsp;<span class="math-tex">\(\mathop \sum \limits_{n = 1}^\infty {a_n}\)</span>&nbsp;is divergent and&nbsp;<span class="math-tex">\(\mathop \sum \limits_{n = 1}^\infty {b_n}\)</span>&nbsp;is convergent.

C. Both the series&nbsp;<span class="math-tex">\(\mathop \sum \limits_{n = 1}^\infty {a_n}\)</span>&nbsp;and&nbsp;<span class="math-tex">\(\mathop \sum \limits_{n = 1}^\infty {b_n}\)</span>&nbsp;are divergent.

D. Both the series&nbsp;<span class="math-tex">\(\mathop \sum \limits_{n = 1}^\infty {a_n}\)</span>&nbsp;and&nbsp;<span class="math-tex">\(\mathop \sum \limits_{n = 1}^\infty {b_n}\)</span>&nbsp;are convergent.

Please scroll down to see the correct answer and solution guide.

Right Answer is: D

SOLUTION

Concept:

A p-series is a specific type of infinite series. It's a series of the form as shown below,

\(\mathop \sum \nolimits_{n = 1}^\infty \frac{1}{{{n^p}}} = \frac{1}{{{1^p}}}+\frac{1}{{{2^p}}}+\frac{1}{{{3^p}}}+... \)

With p-series,

If p > 1, the series will convergeIf 0 < p ≤ 1, the series will diverge.

The Ratio test:

Theorem: Let ∑an be a series and If \(\mathop {\lim }\limits_{n \to \infty } \frac{{{a_{k + 1}}}}{{{a_k}}} = L\), and

if L < 1 then the series converges, but if L > 1 the series diverges.

If L = 1, then the test is inconclusive, then we have to go for another test.

Explanation:

Consider the first series:

 \(\mathop \sum \limits_{n = 1}^\infty {a_n} \Rightarrow \mathop \sum \limits_{n = 1}^\infty \frac{1}{{n\sqrt n }} \Rightarrow \mathop \sum \limits_{n = 1}^\infty \frac{1}{{{n^{\frac{3}{2}}}}}\)

This takes the form of p series \(\mathop \sum \limits_{n = 1}^\infty \frac{1}{{{n^p}}}\)

Here p = 3/2

p > 1 ⇒ Convergent

Consider the second series \(\mathop \sum \limits_{n = 1}^\infty {b_n} \Rightarrow \mathop \sum \limits_{n = 1}^\infty \frac{1}{{n!}}\)

By ratio test, \( \Rightarrow \mathop {\lim }\limits_{n \to \infty } \frac{{{b_{n + 1}}}}{{{b_n}}} = {\rm{lim}}\frac{1}{{n + 1}} = 0\)

Here L = 0 (< 1) ⇒ Convergent

Therefore, both the series are convergent.